

# **PPCR**

(Polipropileno Copolimero Random)





## **ÍNDICE GERAL**

| ÁGUA QUENTE E FRIA                                                                    |    |
|---------------------------------------------------------------------------------------|----|
| Introdução                                                                            | 02 |
| Aplicações                                                                            | 03 |
| Vantagens do sistema                                                                  | 04 |
| Como fazer uma termofusão                                                             | 07 |
| Como instalar uma derivação                                                           | 09 |
| Como usar o nível                                                                     | 10 |
| Como realizar um conserto na rede                                                     | 11 |
| Como fazer o aperto nas ligações rosqueadas                                           | 12 |
| Curvamento na tubulação                                                               | 13 |
| Instalação embutida                                                                   | 14 |
| Instalação aparente vertical / Diâmetro e distância das buchas dos suportes           | 15 |
| Instalação aparente horizontal                                                        | 16 |
| Determinação do comprimento do braço de flexão                                        | 17 |
| Instalações aparente                                                                  | 18 |
| Perda de carga                                                                        | 19 |
| Coeficiente de resistência de carga                                                   | 22 |
| Revestimento para proteção das instalações                                            | 23 |
| Utilização em chiller                                                                 | 23 |
| Proteção contra radiação solar / Instalação entre placa de aquecimento solar e boiler | 24 |
| Resistência da tubulação em serviço                                                   | 25 |
| Tabela de pressões e temperaturas                                                     | 27 |
| Corrosão                                                                              | 28 |
| Teste de pressão hidráulica                                                           | 29 |
| Fases do teste                                                                        | 30 |
| Teste final                                                                           | 31 |
| Tabela de resistência química e commodities                                           | 32 |
| Propriedade do PPCR / Sistema TOPFUSIÓN descrição do tubo                             | 34 |
| Linha de produtos 🌚 HIDRO                                                             | 36 |

Rev. 21 | 27/09/2021



Neste catálogo (Linha PHIDRO), estão disponíveis ao leitor as informações necessárias para o uso correto do SISTEMA TOPFUSIÓN para condução de água quente e fria.

Fabricados com Polipropileno Copolímero Random - PPCR - tipo 3, de origem européia, especialmente formulada para atender o uso da condução de água quente e fria, sendo material atóxico e atendendo a norma nacional (ABNT) e as internacionais (DIN / IRAM / UNIT / ISO).

O Sistema TOPFUSIÓN soluciona os problemas mais comuns que ocorrem nas instalações metálicas, tais como: incrustações, vazamentos, corrosões, uniões difíceis, dissipações de calor. Seu uso permite altas pressões e temperaturas de forma constante, durante longo período, conforme normas técnicas.

O Sistema TOPFUSIÓN é composto por todos os elementos necessários da instalação hidráulica, (tubos, conexões lisas, conexões mistas com bucha metálica, registros, suportes fixos e deslizantes, além de termofusora, alicate de corte, nível, sistemas de reparo e instruções para o uso correto).

Atualmente, dispõe de tubulações e respectivas conexões em diâmetros de 20 a 160 mm, com fabricação 100% nacional.

## **APLICAÇÕES**



#### Residências

Garantia de água potável, resistência a altas e baixas temperaturas, economia de instalação e durabilidade.



#### **Edifícios**

Sistema indicado para suportar as altas cargas das colunas d'água.



#### Indústrias

Ideal para indústrias alimentícias pela atoxidade do material. Alta resistência a impactos e a produtos abrasivos.



#### **Hospitais**

O sistema reduz consideravelmente o risco de contaminação hospitalar, pela característica do PPCR-3 e pelo sistema de termofusão.



#### Condomínios

Alta versatililidade na ligação de redes de abastecimento de água. Resistência e flexibilidade elevadas.



#### Hotéis

Grande economia principalmente na condução de água quente, pela baixa condutividade térmica (perda de calor) do sistema.



#### **Embarcações**

Sistema mais leve e não corrosivo.



#### Irrigação

Alta flexibilidade e versatilidade na distribuição da rede.



#### **Postos**

Maior segurança na rede, por ser imune a correntes elétricas parasitárias.



#### **Plataformas**

Ideal para esta aplicação: anticorrosivo, leve, resistente, flexível, versátil, seguro, etc.

#### **VANTAGENS DO SISTEMA**



#### Condutividade Térmica

O PPCR é um material de baixa condutividade térmica, ou seja, mínima perda de calor.

Isso garante uma grande economia na condução de água quente.



#### Termofusão

A Termofusão (fusão molecular) garante uma estanqueidade total a união, eliminando qualquer possibilidade de vazamento.

Ela tansforma tubos e conexões em uma peça única, bastando utilizar uma termofusora da TOPFUSIÓN.



#### Alta Temperatura

O sistema foi desenvolvido para suportar água a altas temperaturas, por longos períodos. As condições de serviço para a tubulação estão relacionadas a um campo de aplicação, para uma vida útil projetada de 50 anos, e devem atender as pressões de projeto, e sob uma temperatura de projeto de 70 °C (conforme norma NBR 15.813).



#### **Baixa Temperatura**

Por sua baixa condutividade térmica o sistema é altamente indicado para regiões frias pois evitam o rompimento das tubulações mesmo com o congelamento da água.



#### Água Potável

Material totalmente atóxico, e bromatológicamente correto. Atualmente é o material mais indicado para a condução de água potável.



#### Químicos

O PPCR tem excelente resistência a vários produtos químicos, devido a seu alto peso molecular.

O material é perfeitamente resistente a soluções, ou materiais, de pH entre 1 e 14. Ex: cal e cimento.

## **VANTAGENS DO SISTEMA**



#### Acústico

Material extremamente elástico e fonoabsorvente, tanto para ruídos como para vibrações devido ao fluxo d'água.



#### Pressão

Os tubos e conexões de PPCR têm uma resistência de trabalho de 20 kgf/cm². Os tubos são testados por uma hora a uma pressão de 52 kgf/cm² a uma temperatura de 20°C. De acordo com as normas DIN 8077/8078 - IRAM 13870/13871 - ABNT 15813.



#### Peso

Os tubos e conexões da TOPFUSIÓN são 70% mais leve que os galvanizados.



#### Montagem

A leveza dos componentes facilita a montagem, mesmo em lugares de difícil acesso.

A técnica da termofusão é simples e de fácil execução em obras com as ferramentas fabricadas pela TOPFUSIÓN.



#### **Flexibilidade**

Os tubos possuem uma alta flexibilidade permitindo curvá-los, de forma permanente, utilizando apenas um aquecedor de ar industrial.

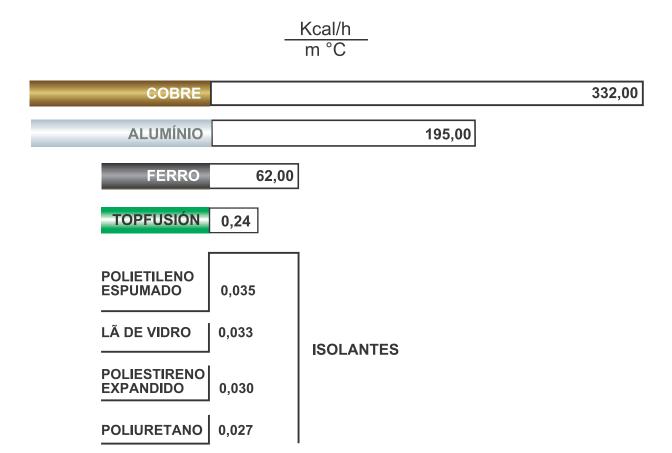


#### **Correntes Parasitas**

O material é mau condutor de eletricidade, como todo plástico, evitando assim o fenômeno da corrosão galvânica.



#### **Economia**


Toda esta gama de vantagens faz do sistema TOPFUSIÓN a opção mais confiável, rápida e consequentemente mais econômica para projetos de redes hidráulicas.

### **VANTAGENS DO SISTEMA**

#### **ECONOMIA DE ENERGIA**

A Utilização do SISTEMA TOPFUSIÓN para a distribuição de água quente, quando comparada com as tubulações convencionais, traz um grande benefício econômico de energia devido a sua baixa condutividade térmica.

### CONDUTIVIDADE TÉRMICA A 20°C



UNIDADE

A utilização de água quente em uma residência pode ser dividida em dois tipos de acordo com a duração do uso:

- 1º Uso demorado (banho e na lavação de roupas);
- 2º Uso rápido (lavar as mãos e pequenos objetos).

No primeiro caso, temos uma redução energética de 20%, devido à baixa disperção térmica (ver tabela acima).

No segundo caso, a menor disperção térmica, faz que a água quente chegue mais rapidamente aos pontos de uso, assim a econômia de energia pode chegar a 25%.

## **COMO FAZER UMA TERMOFUSÃO**

Antes de iniciar a operação de montagem, devem ser verificados se os terminais térmicos da termofusora estão bem fixos contra a placa condutora do aquecimento. Ligar a termofusora para o aquecimento prévio até a temperatura de termofusão atinja 260 °C.

Importante: limpar os terminais térmicos macho e fêmea bem como as extremidades a serem unidas.



**01** Cortar com a tesoura apropriada para obter um corte perpendicular ao eixo do tubo;



**02** Marcar no extremo do tubo os centímetros que serão introduzidos na bolsa térmica ou observar a marcação do encosto no fundo da bolsa;



**03** Após a termofusora atingir a temperatura de trabalho, introduzir ao mesmo tempo nos terminais térmicos o tubo e a conexão;



Batente Corte de orientação

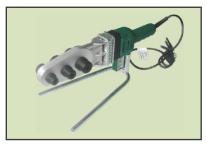
O4 A conexão deve chegar ao batente e ao tubo na marca (corte de orientação), ou na marcação do encosto. Aguardar o tempo de aquecimento de acordo com a bitola, conforme tabela tempo de aquecimento;



**05** Concluído o tempo de aquecimento, retirar o tubo e a conexão dos terminais térmicos macho e fêmea;

## **COMO FAZER UMA TERMOFUSÃO**




**06** Introduzir o tubo imediatamente na conexão de forma contínua até unir os dois anéis;



**07** Por 3 segundos ainda é possível ajustar o posicionamento da conexão, com um giro máximo de mais ou menos 15°;



Observar que para uma boa termofusão, deverá formar-se dois anéis ao término da união. Deixar esfriar de acordo com a tabela de tempo, sem forçar as partes unidas;



Deixar sempre a termofusora no seu suporte para evitar possibilidade de acidentes ou danos ao equipamento, quando não estiver sendo utilizada.

| TABELA DE TEMPO E PROFUNDIDADE DE INSERÇÃO |              |                           |                    |                 |  |  |  |  |
|--------------------------------------------|--------------|---------------------------|--------------------|-----------------|--|--|--|--|
| Diâmatus de tube                           | Tempo em     | segundos                  | Cura am            | Profundidade de |  |  |  |  |
| Diâmetro do tubo<br>e da conexão           | Aquecimento* | Acoplamento<br>(montagem) | Cura em<br>minutos | inserção em mm  |  |  |  |  |
| 20                                         | 5            | 4                         | 2                  | 12,2            |  |  |  |  |
| 25                                         | 7            | 4                         | 2                  | 13              |  |  |  |  |
| 32                                         | 8            | 6                         | 4                  | 14,5            |  |  |  |  |
| 40                                         | 12           | 6                         | 4                  | 16              |  |  |  |  |
| 50                                         | 18           | 6                         | 4                  | 18              |  |  |  |  |
| 63                                         | 24           | 8                         | 6                  | 24              |  |  |  |  |
| 75                                         | 30           | 10                        | 8                  | 26              |  |  |  |  |
| 90                                         | 40           | 15                        | 8                  | 29              |  |  |  |  |
| 110                                        | 50           | 20                        | 8                  | 32,5            |  |  |  |  |
| 160                                        | 70           | 40                        | 12                 | 43              |  |  |  |  |

Dimensões em milímetros (mm) – Tempo em segundos (s).

<sup>\*</sup>Aumentar 50% o tempo de aquecimento quando a temperatura ambiente < 10 °C.

## COMO INSTALAR UMA DERIVAÇÃO



**01** Faça a furação do tubo da linha principal (50 e 90 mm) com uma serra de diâmentro 32 mm (1" 1/4);



**02** Para facilitar esta operação, sugerimos deixar a tarja dos tubos para cima na montagem da rede;



O3 Com os bocais apropriados para a operação, colocar a termofusora sobre perfuração do tubo por um tempo de 15 segundos (atenção ao alinhamento);



Após o aquecimento do tubo, inserir a derivação no outro bocal e aquecer por 20 segundos. Sem retirar a termofusora do tubo. Tempos de aquecimento total: tubo = 35 segundos derivação = 20 segundos;



**05** Retirar a termofusora e aplicar a derivação no tubo;



Pressione firme a derivação, verificando sua perpendicularidade com o tubo. É importante que a derivação seja pressionada ao tubo por aproximadamente 1 minuto;



**07** A derivação está pronta para receber o tubo de saída;



Deixar sempre a termofusora no seu suporte para evitar possibilidade de acidentes ou danos ao equipamento, quando não estiver sendo utilizada.

Obs.: Derivações de rede nas bitolas de 50 a 160 mm\*.

\*Para tubulação de 110 e 160mm, dever utilizado a Derivação de 90mm.

## **COMO USAR O NÍVEL**

Esta ferramenta foi desenvolvida para obter uma instalação precisa e rápida, para nivelar em todos os sentidos e com distância entre centros bem definidos.

### O nível é composto de:

Um corpo prismático (nível), com dois níveis horizontais e um vertical, contendo seis furos distanciadores (15, 17, 20 e 21 cm).

Dois gabaritos posicionadores com rosca metálica de ½ numa das extremidades.



#### Usando o nível



1- Retire os tampões protetores da rosca das conexões:



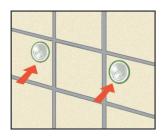
2- Rosqueie os gabaritos posicionadores nos joelhos a serem nivelados:



3- Passar os gabaritos posicionadores pelos furos do nível de acordo com a distância entre os centros escolhidos.
Ex. (21-21) para misturador de cozinha;



4- Preparar a massa de cura rápida e aplicar nos canais da parede onde serão chumbados os joelhos;




5- Com a massa assentada, chumbar os joelhos nivelando os mesmos em ambos os sentidos. Segurar o nível pelo tempo mínimo até que não ocorra mais o deslocamento das conexões. **Nota:** prever a profundidade ideal para o revestimento;



6- Retire o nível e desrosqueie os gabaritos posicionadores. Recoloque os tampões protetores na rosca das conexões.

Fechar os canais da instalação;



7- Mantenha os tampões enquanto não estiver usando a instalaçã, (até a montagem dos registros).

Obs.: O nível pode ser utilizado para nivelamento de rede individual.

## **COMO REALIZAR UM CONSERTO NA REDE**

O conserto da tubulação de PPCR é simples de realizar. Dependendo do tipo de ocorrência e do diâmetro do tubo, são recomendados diferentes procedimentos.

- Para tubos de diâmetros (20 e 25 mm), pode-se fazer o conserto com luvas normais, conforme desenhos abaixo:
- Retirar o tubo do local instalado, usando cunha de madeira;
- Cortar o trecho danificado do tubo e acoplar uma luva em uma das extremidades;
- A luva deve ser aquecida com o dobro de tempo de aquecimento do tubo;
- Aquecer o tubo com o tempo normal;
- Efetuar a termofusão unindo o tubo com a luva pré aquecida.









Para conserto de diâmetros maiores recomenda-se o uso de uniões.

## Para conserto de furo proceder da seguinte forma:

- Uma vez localizado o furo, limpar e secar a região danificada:
- Refurar com broca de 8mm o local do vazamento;
- Marcar na "peça de reparo" a espessura do tubo a reparar;
- Introduzir no tubo o "extremo macho" do terminal de reparação, e no furo da mesma a peça de reparo até a marca da espessura;
- Aquecer através da termofusora o "extremo macho" e a "peça de reparo" (Vide tabela de tempo na pág. 08);
- Introduzir no tubo a "peça de reparo" e deixar esfriar por alguns segundos;
- Cortar o excesso da peça de reparo.

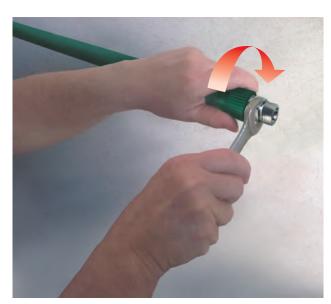








## COMO FAZER O APERTO NAS LIGAÇÕES ROSQUEADAS


#### Fita veda rosca

Antes de fazer o aperto, colocar a fita veda rosca.

A vedação deve ser feita somente com fita PTFE (Teflon). O uso de qualquer outro tipo de vedante poderá causar problemas no momento da união das conexões, podendo o travamento se dar antes do plano de calibração.



### Aperto com chave



Todo o rosqueamento da conexões com inserto metálico x inserto metálico (conexão, terminal, torneira ou nipel), deve ser feita com força moderada podendo ser feito com um "LEVE" torque com ferrament a apropriada (evitando a excessiva torção). O aperto inicial deve ser feito somente com as mãos, e após fazer o uso da ferramenta para o término total do aperto.

Atenção: o aperto final usando a ferramenta, deve ser feito somente girando a peça em até ½ volta.



Não usar "MORSA, CHAVE DE GRIFO, ALICATE DE PRESSÃO", estas ferramentas podem causar compressão na parte plástica (PPR), que cederá ao ser submetido à forças excessívas, podendo ocasionar o destravamento do inserto metálico proporcionando o giro em torno do seu eixo ou até mesmo o rompimento da peça.

## **CURVAMENTO NA TUBULAÇÃO**

A instalação, onde é necessário utilizar curva na tubulação, as soluções são várias.

As curvas são fabricadas nas bitólas de 20, 25, 32, 40, 50, 63, 75, 90 e 110 mm. Também pode se curvar os tubos conforme os raios de curvatura na tabela.

| RAIO DE CURVATURA MÍNIMO  |                 |  |  |  |  |  |  |
|---------------------------|-----------------|--|--|--|--|--|--|
| Diâmetro do tubo<br>em mm | R= 8 x diâmetro |  |  |  |  |  |  |
| 20                        | 160             |  |  |  |  |  |  |
| 25                        | 200             |  |  |  |  |  |  |
| 32                        | 256             |  |  |  |  |  |  |
| 40                        | 320             |  |  |  |  |  |  |
| 50                        | 400             |  |  |  |  |  |  |
| 63                        | 500             |  |  |  |  |  |  |
| 75                        | 600             |  |  |  |  |  |  |
| 90                        | 720             |  |  |  |  |  |  |
| 110                       | 880             |  |  |  |  |  |  |

O tubo curvado deve ser fixado para evitar que a memória elástica do material retorne o mesmo a sua forma inicial.



Para uma curvatura pemanente (perda de memória elástica), é necessário que a mesma seja feita de um soprador industrial de ar quente.



## **INSTALAÇÃO EMBUTIDA**

A tubulação do SISTEMA TOPFUSIÓN pode ser embutida diret amente no canal aberto na parede; para esta finalidade não necessita de revestimento ou espaço livre.

## **DILATAÇÃO**

- 1º Assim como todos os materiais, os tubos de PPCR se dilatam e contraem nas mudanças de temperatura, mas pelo baixo módulo de elasticidade do PPCR estas mudanças não são consideradas;
- 2º A montagem dos componentes, tubo e conexão, do SISTEMA TOPFUSIÓN realizado por termofusão resulta em uma peça única, sem risco de vazamento;
- 3º A excelente resistência aos agentes químicos dos tubos e das conexões fabricados em PPCR permitem o contato direto com a argamassa.

### Algumas considerações.

1º – Paredes de 30 cm de espessura ou superior, aplicar massa forte de cura rápida nas mudanças de direção, e a cada 70 ou 80 cm ao longo da tubulação (fig. 1);

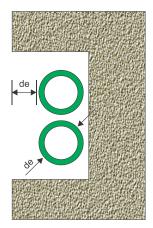



Fig. 1

**2º** – Quando a parede for de espessura inferior a 30 cm, deve aumentar a largura do canal para permitir uma maior separação entre as linhas de água quente e fria. Este canal deve ser fechado com massa forte (fig. 2).

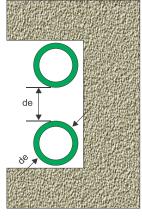
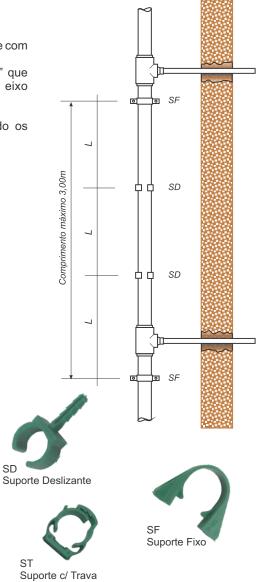



Fig. 2

## **INSTALAÇÃO APARENTE VERTICAL**

#### Tubulação vertical


A imobilização dos pontos de derivação se faz com "SF – suporte fixo" (suporte com borracha o mais próximo possível da Curva, Joelho, ou Tê).

Além dos suportes fixos, devem ser colocados "SD – suportes deslizantes" que permitem aos tubos se movimentarem livremente no sentido do seu eixo longitudinal.

As distâncias entre os SD's, estão indicadas na tabela abaixo, colocando os suportes na extenção recomendada poderá ser evitado:

- 1º A colocação de compensadores de variação longitudinal;
- 2º Ainstalação de braços elásticos em cada uma das derivações.

| DISTÂNCIA ENTRE SUPORTE E PRESILHA EM CENTÍMETROS<br>PARA DIFERENTE TEMPERATURAS E DIÂMETROS |    |    |    |    |    |    |     |     |     |     |
|----------------------------------------------------------------------------------------------|----|----|----|----|----|----|-----|-----|-----|-----|
| Ø do tubo                                                                                    | 20 | 25 | 32 | 40 | 50 | 63 | 75  | 90  | 110 | 160 |
| 20°C                                                                                         | 50 | 55 | 70 | 70 | 80 | 90 | 120 | 120 | 140 | 160 |
| 30°C                                                                                         | 50 | 55 | 65 | 65 | 80 | 90 | 110 | 110 | 130 | 150 |
| 40°C                                                                                         | 45 | 50 | 60 | 60 | 75 | 85 | 105 | 105 | 120 | 135 |
| 50°C                                                                                         | 45 | 50 | 60 | 60 | 75 | 85 | 100 | 100 | 120 | 130 |
| 60°C                                                                                         | 45 | 50 | 55 | 60 | 70 | 80 | 90  | 95  | 110 | 120 |
| 70°C                                                                                         | 40 | 45 | 50 | 55 | 65 | 75 | 85  | 90  | 110 | 120 |
| 80°C                                                                                         | 40 | 40 | 50 | 50 | 60 | 70 | 80  | 80  | 100 | 110 |



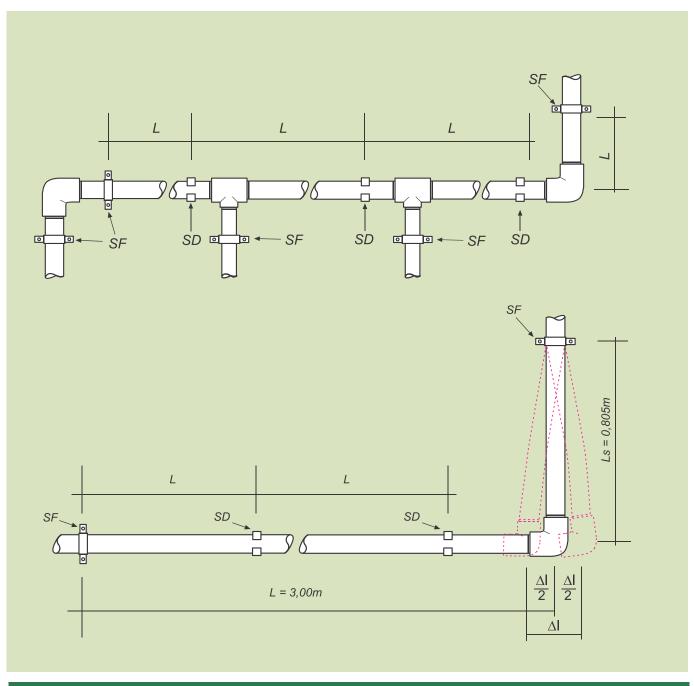
## DIÂMETRO E DISTÂNCIA DAS BUCHAS DOS SUPORTES

| SUPORTE FIXO |                       |  |  |  |  |  |
|--------------|-----------------------|--|--|--|--|--|
| Suporte      | Distância Recomendada |  |  |  |  |  |
| 20           | 31                    |  |  |  |  |  |
| 25           | 37                    |  |  |  |  |  |
| 32           | 44                    |  |  |  |  |  |
| 40           | 58                    |  |  |  |  |  |
| 50           | 67                    |  |  |  |  |  |
| 63           | 78                    |  |  |  |  |  |
| 75           | 88                    |  |  |  |  |  |
| 90           | 116                   |  |  |  |  |  |
| 110          | 130                   |  |  |  |  |  |

| SUPORTE DESLIZANTE |          |  |  |  |  |  |
|--------------------|----------|--|--|--|--|--|
| Suporte            | Ø Bucha* |  |  |  |  |  |
| 20                 | 5        |  |  |  |  |  |
| 25                 | 5        |  |  |  |  |  |
| 32                 | 7        |  |  |  |  |  |

<sup>\*</sup>Para auxiliar na escolha do parafuso.






## **INSTALAÇÃO APARENTE HORIZONTAL**

### Tubulação horizontal

Quando nas derivações, vertical ou horizontal, não for possível a colocação de "SF – suporte fixo", deve ser prevista a instalação de compensadores de dilatação (Ômega) na tubulação principal e a cada derivação.

No caso das derivações, poderá se instalar braços elásticos ou de flexão que assegurem o movimento controlado das mesmas no lugar dos compensadores.



## CRITÉRIOS DE COMPENSAÇÃO DA DILATAÇÃO TÉRMICA

### Exemplo de cálculo

#### **TUBO PPR:**

Diâmetro do tubo: 63mm Comprimento da tubulação: 8,0m Temperatura de trabalho: 70°C Temperatura ambiente: 20°C

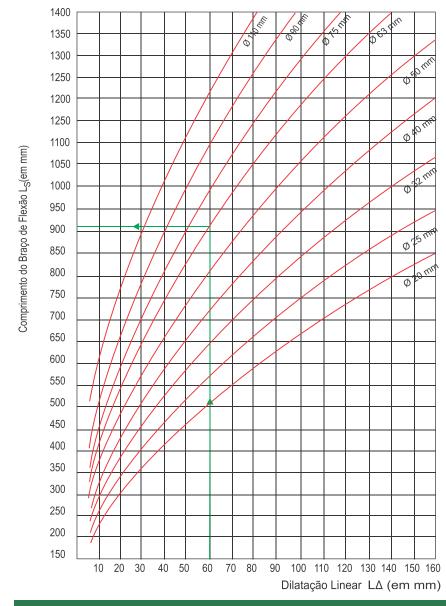
### **DILATAÇÃO LINEAR**

Para realizar uma instalação aparente com o sistema TOPFUSIÓN é necessário levar em consideração que podem ocorrer dilatações e contrações devidas às variações de temperatura.

Este efeito pode ser avaliado pela fórmula:  $\Delta L = a \times \Delta T \times L$ 

ΔL - Dilatação linear (mm)

a - Coeficiente de dilatação linear (PPR = 0,15mm / m°C)


ΔT - Diferença de temperatura ambiente e de operação (°C)

L - Comprimento de trecho de tubulação entre dois pontos fixos (m)

 $\Delta L = a \times \Delta T \times L$ 

 $\Delta L = 0.15 \text{ mm} / \text{m}^{\circ}\text{C} \times (70-20)^{\circ}\text{C} \times 8$ 

 $\Delta L = 60 \text{ mm}$ 



## Braço de Flexão

Na maior parte dos casos é possível aproveitar as mudanças de direção no traçado da tubulação para absorver a dilatação linear.
Uma vez obtido o valor de ΔL

pode-se calcular o comprimento do braço de flexão através da fórmula: L<sub>S</sub> = C x√d x ΔL

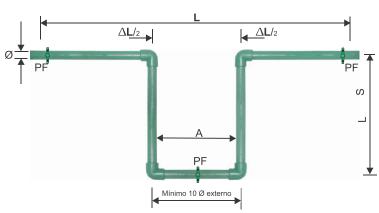
- Ls- Comprimento do braço de flexão (mm)
- C Constante que depende do material (PPR = 15)
- d Diâmetro externo do tubo (mm)
- ΔL Dilatação linear (mm)

$$L_s = C \times \sqrt{d \times \Delta L}$$

$$L_s = 15 \times \sqrt{63 \times 60}$$

$$L_{s} = 922 \text{ mm}$$

## **INSTALAÇÕES APARENTES**


## **DILATAÇÃO LINEAR**

A dilatação linear descrita pode ser obtida de forma direta da tabela abaixo. A tabela torna possível determinar rapidamente a variação do comprimento e da compensação da dilatação.

| TUBO DILATAÇÃO LINEAR (em mm) |       |                             |       |       |       |       |        |        |  |  |
|-------------------------------|-------|-----------------------------|-------|-------|-------|-------|--------|--------|--|--|
| Comprimento<br>Da tubulação   |       | Diferença de Temperatura ∆T |       |       |       |       |        |        |  |  |
| (m)                           | 10    | 20                          | 30    | 40    | 50    | 60    | 70     | 80     |  |  |
| 0,1                           | 0,15  | 0,30                        | 0,45  | 0,60  | 0,75  | 0,09  | 1,05   | 1,20   |  |  |
| 0,2                           | 0,30  | 0,60                        | 0,90  | 1,20  | 1,50  | 1,80  | 2,10   | 2,40   |  |  |
| 0,3                           | 0,45  | 0,90                        | 1,35  | 1,80  | 2,25  | 2,70  | 3,15   | 3,60   |  |  |
| 0,4                           | 0,60  | 1,20                        | 1,80  | 2,40  | 3,00  | 3,60  | 4,20   | 4,80   |  |  |
| 0,5                           | 0,75  | 1,50                        | 2,25  | 3,00  | 3,75  | 4,50  | 5,25   | 6,00   |  |  |
| 0,6                           | 0,90  | 1,80                        | 2,70  | 3,60  | 4,50  | 5,40  | 6,30   | 7,20   |  |  |
| 0,7                           | 1,05  | 2,10                        | 3,15  | 4,20  | 5,25  | 6,30  | 7,35   | 8,40   |  |  |
| 0,8                           | 1,20  | 2,40                        | 3,60  | 4,80  | 6,00  | 7,20  | 8,40   | 9,60   |  |  |
| 0,9                           | 1,35  | 2,70                        | 4,05  | 5,40  | 6,75  | 8,10  | 9,45   | 10,80  |  |  |
| 1,0                           | 1,50  | 3,00                        | 4,50  | 6,00  | 7,50  | 9,00  | 10,50  | 12,00  |  |  |
| 2,0                           | 3,00  | 6,00                        | 9,00  | 12,00 | 15,00 | 18,00 | 21,00  | 24,00  |  |  |
| 3,0                           | 4,50  | 9,00                        | 13,50 | 18,00 | 22,50 | 27,00 | 31,50  | 36,00  |  |  |
| 4,0                           | 6,00  | 12,00                       | 18,00 | 24,00 | 30,00 | 36,00 | 42,00  | 48,00  |  |  |
| 5,0                           | 7,50  | 15,00                       | 22,50 | 30,00 | 37,50 | 45,00 | 52,50  | 60,00  |  |  |
| 6,0                           | 9,00  | 18,00                       | 27,00 | 36,00 | 45,00 | 54,00 | 63,00  | 72,00  |  |  |
| 7,0                           | 10,50 | 21,00                       | 31,50 | 42,00 | 52,50 | 63,00 | 73,50  | 84,00  |  |  |
| 8,0                           | 12,00 | 24,00                       | 36,00 | 48,00 | 60,00 | 72,00 | 84,00  | 96,00  |  |  |
| 9,0                           | 13,50 | 27,00                       | 40,50 | 54,00 | 67,50 | 81,00 | 94,50  | 108,00 |  |  |
| 10,0                          | 15,00 | 30,00                       | 45,00 | 60,00 | 75,00 | 90,00 | 105,00 | 120,00 |  |  |

## Compensador de Dilatação (Omega)

Se não for possível uma compensação linear variando a direção, será necessário instalar um compensador  $D_S$  de dilatação. Além do comprimento do braço de flexão L, ao colocar um compensador de dilatação, é preciso prever sua largura A, através da fórmula  $A = (2 \times \Delta L) + A$ , que deve ter pelo menos 10 vezes o diâmetro externo da tubulação:

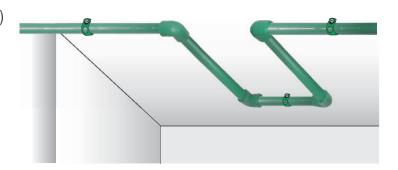


A - Largura do compensador de dilatação (mm)

L - Comprimento da dilatação linear (mm)

D<sub>S</sub> - Distância de segurança (150)

A =  $(2 \times \Delta L) + D_S$ 


 $A = (2 \times 60) + 150$ 

A = 270 mm, e

 $A > 10 \times \emptyset$ 

270 mm < 10 x 63 mm Portanto, adota-se:

A = 630 mm



### PERDA DE CARGA

A circulação de um fluído por uma tubulação sofre perda de pressão, em função da perda de energia provocada entre outros fatores pelo atrito contra as paredes e por possíveis estrangulamentos, nas mudançãs de direção.

Vários fatores são responsáveis por esta perda de energia, entre eles:

- \* Comprimento das tubulações;
- \* Rugosidade da superfície interna da mesma;
- \* Bitola da rede:
- \* Viscosidade do fluído:
- \* Densidade do fluído:
- \* Tipo de fluxo (laminar ou turbulento);
- \* Quantidade e intensidade das mudanças de direção.

Temos dos tipos de perda de carga: A perda de carga distribuída e as perdas de carga das singularidades (perda de carga das conexões).

As perdas de carga distribuídas dependem da rugosidade interna da tubulação, do comprimento da mesma, das propriedades físicas do fluído e da sua velocidade.

Para as perdas de carga distribuídas, pode ser utilizado o DIAGRAMA DE PERDA DE CARGA.

A perda de carga calcula-se multiplicando o coeficiente de resistência vezes o comprimento em metros lineares.

Exemplo: tubo PN 20 de diâmetro 25, com vazão de 0,1 l/s e velocidade entre <0,4 <0,5 m/s.

Perda de carga = 23mm/m (0.23 mca/m).

As perdas de carga pelas singularidades, ou seja, as perdas de cargas equivalentes em metros de comprimento, correspondente a cada conexão, dependendo se suas característica e forma de utilização.

Perda de carga das singularidades: Deve-se calcular o comprimento equivalente, para cada singularidade diferente e multiplicar-se pela quantidade das mesmas.

O quadro mostra o COEFICIENTE DE RESISTÊNCIA DE PERDA CARGA PRA CONEXÕES TOPFUSIÓN.

Este quadro nos fornece o valor R (coeficiente de resistência), pág. 22.

Para calcular o comprimento equivalente, temos a fórmula:


Ceq =  $\Sigma R (V^2/2g)$ 

Onde:  $\Sigma R$  = a somatória de todos os coeficentes de resistência;

V = velocidade média do fluido transportado em m/seg:

g = aceleração da gravidade (9,81 m/s²).

## **PERDA DE CARGA**



A perda da carga total de uma tubulação calcula-se multiplicando o coeficiente da resistência x metros lineáres.

Nota: os metros lineáres totais da tubulação correspondem a soma do tubo utilizado mais as conexões da instalação.

Exemplo: Tubo de 25mm x 3,5mm PN 20;

Vazão: 0,1 l/s;

Perda de carga: 23mm/m; Velocidade < 0,4 < 0,5 m/s.

### PERDA DE CARGA

### Determinação das perdas de carga

As perdas de carga totais de uma tubulação são o resultado da somatória de:  $\Delta \, pf = \Delta \, pt + \Delta \, pc + \Delta \, pv + \Delta \, pu$ 

#### Sendo:

 $\triangle$  pf = perda final;

 $\overline{\Delta}$  pt = perda de carga nas tubulações;

 $\Delta$  pc = perda de carga nas conexões;

∆ pv = perda de carga nas válvulas;

 $\Delta$  pu = perda de carga nas uniões.

### Perda de carga nas tubulações

$$\Delta pt = f. \frac{L}{di} \cdot \frac{r}{2} \cdot V^2$$

#### Sendo:

f: Coeficiente de fricção do tubo (0,02);

L : comprimento da tubulação;

di: diâmetro interno do tubo;

r : densidade média;

V: velocidade do fluxo.

#### TABELA DE DIMENSIONAMENTO

A tabela abaixo mostra a vazão de água e a pressão mínima necessária para o funcionamento correto de cada peça.

#### **TABELA DE DIMENSIONAMENTO**

| DECA                    | VAZÃO LITROS | PRESSÃO MÍNIMA |        |  |  |
|-------------------------|--------------|----------------|--------|--|--|
| PEÇA                    | SEGUNDOS     | kgf/cm²        | m.c.a. |  |  |
| Aquecedor de água       | 0,30         | 0,4            | 4      |  |  |
| Banheira                | 1,00         | 0,1            | 1      |  |  |
| Bidê                    | 0,12         | 0,1            | 1      |  |  |
| Aquecedor de água       | 0,30         | 0,4            | 4      |  |  |
| Vaso sanitário          | 0,15         | 0,1            | 1      |  |  |
| Lavatório               | 0,10         | 0,1            | 1      |  |  |
| Tanque                  | 0,12         | 0,1            | 1      |  |  |
| Máquina de lavar roupas | 0,25         | 0,2            | 2      |  |  |
| Máquina de lavar louças | 0,15         | 0,1            | 1      |  |  |
| Pia da cozinha          | 0,12         | 0,1            | 1      |  |  |

## COEFICIENTE DE RESISTÊNCIA DE CARGA

## CONEXÕES TOPFUSIÓN

| CONEXÕES<br>MODELO | SIMBOLO<br>GRÁFICO  | COEFICIENTE DE<br>RESISTÊNCIA |
|--------------------|---------------------|-------------------------------|
| Luva               |                     | 0,25                          |
| Bucha de Redução   | ]                   | 0,55                          |
| Joelho 90°         | رد                  | 1,30                          |
| Joelho 45°         | 10                  | 0,50                          |
|                    | <b>→</b> ↑ <b>←</b> | 1,30                          |
|                    | <b>→</b> →          | 0,80                          |
| Tê                 | <u></u>             | 1,80                          |
|                    | <b>→</b> ↑ ←        | 2,20                          |

| CONEXÕES<br>MODELO                       | SIMBOLO<br>GRÁFICO | COEFICIENTE DE<br>RESISTÊNCIA |
|------------------------------------------|--------------------|-------------------------------|
| Luva Mista com<br>Inserto Metálico       | <b>→</b>           | 0,50                          |
| Adaptador com<br>Inserto Metálico        | <b>→</b>           | 0,70                          |
| Joelho 90° Femea<br>com Inserto Metálico |                    | 1,40                          |
| Curva 90° Curta                          |                    | 0,60                          |
| Joelho 90°Macho com Inserto Metálico     |                    | 1,60                          |
| Tê com Inserto<br>Metálico               | <b>1</b>   L       | 1,60                          |
| Tê Macho com<br>Inserto Metálico         | <u></u>            | 1,80                          |

## REVESTIMENTO PARA PROTEÇÃO DAS INSTALAÇÕES

### Proteção contra condenação em sistemas de refrigeração.

As tubulações realizadas com tubos e conexões TOPFUSIÓN, podem ser utilizados para a condução de fluídos à baixas temperaturas, como é o caso dos sistemas de refrigeração.

Tendo-se em conta que a diferença de temperaturas, entre a atmosférica, no meio onde a tubulação se encontra e a exterior do tubo, poderá se produzir o fenômeno da condensação com o gotejamento indesejado de água.

Para sanar este problema, será necessário isolar a tubulação com algum material térmico, tal como fita de borracha microporosa revestida de alumínio, tubo de polietileno expandido, etc.

A espessura desta proteção, varia conforme o diâmetro e a espessura da parede do tubo.

## **UTILIZAÇÃO EM CHILLER**

Inúmeros processos precisam ser resfriados por meio de um fluxo contínuo de água. O chiller, que incorpora em um gabinete fechado todos os componentes necessários para o fornecimento contínuo de água gelada com controle preciso de temperatura, é a resposta para esta necessiadade.

Para esse sistema, a linha de HIDRO da TOPFUSIÓN é a melhor opção do mercado nesse tipo de instalação.



## PROTEÇÃO CONTRA RADIAÇÃO SOLAR

O polipropileno, como todos os materiais plásticos, degrada-se com a exposição aos raios solares (em especial com radiação ultravioleta). Esta degradação é lenta e se produz de fora para dentro. A primeira manifestação dela nota-se na descoloração das tubulações.

A matéria prima com a que produzimos os tubos e conexões, possuem na sua composição um aditivo para minimizar este efeito (chamados absorvedores de UV), mesmo assim, como a quantia empregada é pequena para que não afete as demais qualidades do produto, a durabilidade das tubulações diminui próximo de 10% comparado com a tubulações protegidas dos raios solares.

Para resolver este problema, a TOPFUSIÓN disponibiliza uma fita protetora que deverá ser usada em situações onde a instalação ficará exposta a luz solar. Esta fita deverá ser enrolada sobre os tubos e conexões, ficando estes totalmente cobertos.



| RENDIMENTO DO ROLO DE 50 M DE FITA DE PROTEÇÃO EM FUNÇÃO DO DIÂMETRO DA TUBULAÇÃO A SER PROTEGIDA |                                                  |    |     |     |   |     |     |   |     |   |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------|----|-----|-----|---|-----|-----|---|-----|---|
| BITOLA TUBO (mm)                                                                                  | BITOLA TUBO (mm) 20 25 32 40 50 63 75 90 110 160 |    |     |     |   | 160 |     |   |     |   |
| N° DE TUBO PROTEGIDO (pç)                                                                         | 13                                               | 10 | 8,5 | 6,5 | 5 | 4,3 | 3,5 | 3 | 2,5 | 1 |

## INSTALAÇÃO ENTRE PLACA DE AQUECIMENTO SOLAR E BOILER

Devido aos novos sistemas de aquecimento solar, com alta eficiência, a Topfusion não recomenda mais utilizar tubos de PPR entre as Placas de Aquecimento e o Boiler.

## RESISTÊNCIA DA TUBULAÇÃO EM SERVIÇO

O comportamento do SISTEMA TOPFUSIÓN em serviço, é função de três parâmetros:

- · Pressão interna do fluído;
- Temperatura do fluído circulante;
- Tempo de operação.

A vinculação entre esses fatores se verifica em um diagrama logarítmico onde se mostram as tensões tangenciais que suporta o material, independente do diâmetro e da espessura do tubo.

Este diagrama é chamado de curva de regressão do Polipropileno Copolímero Rondom.

Os tubos e conexões TOPFUSIÓN são fabricados de acordo com a Norma Nacional (ABNT 15813) e as Internacionais (DIN 8077, 8078 e 16962 – IRAM 13470, 13471 e 13472 – UNIT 799/90). São realizados ensaios de pressão, com intervalo de temperaturas de 20, 30, 40, 50, 60, 70, 80, 90, 95 e 110 °C, para determinar o valor minimo de resistência dos tubos de acordo com as normas acima.

A fórmula utilizada para a realização dos ensaios, é:

 $\sigma = P e (D ext - e min) / 2. e min$ 

#### Sendo:

σ = Tensão de ensaio, segundo a Norma DIN 8078;

Para 1 hora de duração, a temperatura será de 20 °C e σ = 16 MPa;

Para 1000 horas de duração, a temperatura será de 95 °C e  $\sigma$  = 3,5 MPa;

**P e** = Pressão hidrostática de ensaio em megapascais;

**D** ext = Diâmetro externo médio do tubo em mm;

e min = Espessura mínima da parede do tubo em mm.

Da fórmula anterior => Pe = 2 . e min .  $\sigma/D$  ext – e min

#### Sendo:

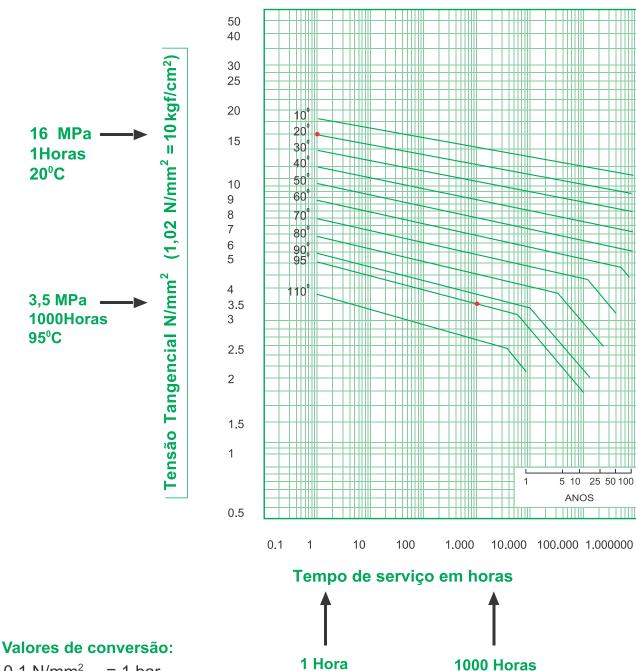
Para 20 °C = > Pe =  $2 \times 2.8 \times 16 / 20 - 2.8 = 5.21$  MPa (1 hora); Para 95 °C = > Pe =  $2 \times 2.8 \times 3.5 / 20 - 2.8 = 1.14$  MPa (1.000 horas).

Cálculo de espessura de parede para tubo \*\* 20 mm.

**e min** = Pe . D ext /  $(2\sigma + Pe)$ 

**e min** =  $5,21 \times 20 / (2 \times 16 + 5,21) = 2,8 \text{ mm}$ 

e min =  $1,14 \times 20 / (2 \times 3,5 + 1,14) = 2,8 \text{ mm}$ 


## RESISTÊNCIA DA TUBULAÇÃO EM SERVIÇO

Levando os dados ao gráfico (curva de regressão) nos eixos das ordenadas (tempo de serviço) em 1 hora, e interceptarmos com a curva de 20 °C, será obtido o valor do ó no eixo das abcissas (16 MPa).

Repetindo isso para o valor de 1000 horas e 95 °C, será obtido o valor no eixo das abcissas (3,5 MPa).

Assim poderão ser obtidas tensões máximas que suportam uma instalação e anos de serviço com as temperaturas requeridas.

### Curva de regressão do PPCR



0,1 N/mm<sup>2</sup> = 1 bar 1,02 bar  $= 1 \text{ kgf/cm}^2$ = 1 MPa 10 kgf/cm<sup>2</sup>

20 °C

**16 MPa** 

95 °C

3,5 MPa

## TABELA DE PRESSÕES E TEMPERATURAS

## TABELA DE PRESSÕES E TEMPERATURAS ATRAVÉS DO TEMPO, SEGUNDO NORMA

Série do tubo = S  $S = \frac{SDR - 1}{2}$  Standard Dimension Ratio = SDR SDR =  $\frac{\text{Diâmetro Nominal}}{\text{espessura nominal}}$  = 2S+1

|                   |          | 0(:   T   (0)     |                          |                      |  |  |  |  |  |
|-------------------|----------|-------------------|--------------------------|----------------------|--|--|--|--|--|
|                   |          | Série do Tubo (S) |                          |                      |  |  |  |  |  |
|                   |          | 5                 | 3,2                      | 2,5                  |  |  |  |  |  |
| Tomporatura       | Anos de  | Stan              | dard Dimension Ratio (   | SDR)                 |  |  |  |  |  |
| Temperatura<br>C° | serviço  | 11                | 7,4                      | 6                    |  |  |  |  |  |
|                   | Serviço  |                   | Pressão Nominal (PN      |                      |  |  |  |  |  |
|                   |          | 12                | 20                       | 25                   |  |  |  |  |  |
|                   |          |                   | a em kgf/cm² Coeficiente |                      |  |  |  |  |  |
|                   | 1        | 17,6              | 27,8                     | 35,0                 |  |  |  |  |  |
|                   | 5        | 16,6              | 26,4                     | 33,2                 |  |  |  |  |  |
|                   | 10       | 16,1              | 25,5                     | 32,1                 |  |  |  |  |  |
| 10                | 25       | 15,6              | 24,7                     | 31,1                 |  |  |  |  |  |
|                   | 50       | 15,2              | 24,0                     | 30,3                 |  |  |  |  |  |
|                   | 100      | 14,8              | 23,4                     | 29,5                 |  |  |  |  |  |
|                   | 1        | 15,0              | 23,8                     | 30,0                 |  |  |  |  |  |
|                   | 5        | 14,1              | 22,3                     | 28,1                 |  |  |  |  |  |
| 20                | 10       | 13,1              | 21,7                     | 27,3                 |  |  |  |  |  |
| 20                | 25       | 13,3              | 21,1                     | 26,5                 |  |  |  |  |  |
|                   | 50       | 12,9              | 20,4                     | 25,7                 |  |  |  |  |  |
|                   | 100      | 12,5              | 19,8                     | 24,9                 |  |  |  |  |  |
|                   | 1        | 12,8              | 20,2                     | 25,5                 |  |  |  |  |  |
|                   | 5        | 12,0              | 19,0                     | 23,9                 |  |  |  |  |  |
|                   | 10       | 11,6              | 18,3                     | 23,1                 |  |  |  |  |  |
| 30                | 25       | 11,2              | 17,7                     | 22,3                 |  |  |  |  |  |
|                   | 50       | 10,9              | 17,3                     | 21,8                 |  |  |  |  |  |
|                   | 100      | 10,6              | 16,9                     | 21,2                 |  |  |  |  |  |
|                   | 1        |                   | 17,1                     | 21,5                 |  |  |  |  |  |
|                   | 5        |                   | 16,0                     | 20,2                 |  |  |  |  |  |
| 40                | 10       |                   | 15,6                     | 19,6                 |  |  |  |  |  |
| 40                | 25       |                   | 15,0                     | 18,8                 |  |  |  |  |  |
|                   | 50       |                   | 14,5                     | 18,3                 |  |  |  |  |  |
|                   | 100      |                   | 14,1                     | 17,8                 |  |  |  |  |  |
|                   | 1        |                   | 14,5                     | 18,3                 |  |  |  |  |  |
|                   | 5        |                   | 13,5                     | 17,0                 |  |  |  |  |  |
| 50                | 10       |                   | 13,1                     | 16,5                 |  |  |  |  |  |
|                   | 25       |                   | 12,6                     | 15,9                 |  |  |  |  |  |
|                   | 50       |                   | 12,2                     | 15,4                 |  |  |  |  |  |
|                   | 100      |                   | 11,8                     | 14,9                 |  |  |  |  |  |
|                   | 1        |                   | 12,2                     | 15,4                 |  |  |  |  |  |
| 60                | 5        |                   | 11,4                     | 14,3                 |  |  |  |  |  |
| 00                | 10       |                   | 11,0                     | 13,8                 |  |  |  |  |  |
|                   | 25<br>50 |                   | 10,5                     | 13,3                 |  |  |  |  |  |
|                   | 1        |                   | 10,1                     | 12,7                 |  |  |  |  |  |
|                   | 5        |                   | 10,3                     | 13,0                 |  |  |  |  |  |
| 70                | 10       |                   | 9,5<br>9,3               | 11,9<br>11,7         |  |  |  |  |  |
|                   | 25       |                   | 8,0                      | 10,1                 |  |  |  |  |  |
|                   | 50       |                   | 6,7                      | 8,5                  |  |  |  |  |  |
|                   | 1        |                   | 8,6                      | 10,9                 |  |  |  |  |  |
| 0.0               | 5        |                   | 7,6                      | 9,6                  |  |  |  |  |  |
| 80                | 10       |                   | 6,3                      | 8,0                  |  |  |  |  |  |
|                   | 25       |                   | 5,1                      | 6,4                  |  |  |  |  |  |
|                   | 1        |                   | J, I                     | 7,7                  |  |  |  |  |  |
| 95                | 5        |                   |                          | 5,0                  |  |  |  |  |  |
| 30                | 10       |                   |                          | 4,2                  |  |  |  |  |  |
|                   |          |                   |                          | <b>-</b> 7, <b>≤</b> |  |  |  |  |  |

## **CORROSÃO**

### **CONCEITOS DE CORROSÃO**

De acordo com a ABRACO (Associação Brasileira de Corrosão) temos as seguintes definições:

A corrosão consiste na deteriorização dos metais pela ação química ou eletroquímica do meio, podendo estar ou não associado aos esforços mecânicos.

Ao considerar o emprego de materiais na construção de equipamentos ou instalações é necessário que estes resistam à ação do meio corrosivo, além de apresentar propriedades mecânicas suficientes e características de fabricação adequada.

### **CORROSÃO QUÍMICA**

É o processo que se realiza na ausência de água, em geral nas temperaturas elevadas (temperatura acima do ponto de orvalho da água), devido a interação direta entre o metal e o meio corrosivo.

### **CORROSÃO GALVÂNICA**

Os metais bons condutores de eletricidade propiciam a circulação pela instalação de correntes parasitas ou galvânicas.

A presença deste tipo de corrente gera fenômeno da corrosão galvânica a qual ataca as partes metálicas da instalação.

Os tubos e conexões da TOPFUSIÓN de Polipropileno Copolímero Random (PPCR), como a maioria dos termoplásticos, são maus condutores elétricos, portanto, os problemas citados acima não existem.

## TESTE DE PRESSÃO HIDRÁULICA

O teste de pressão hidráulica ou de estanqueidade de uma instalação, deve ser realizado sempre, no fim da instalação e antes de cobrir as tubulações.

As regras técnicas para instalação de água potável (DIN 1988) assim o exigem.

O teste deve ser realizado a 1,5 vezes a pressão de serviço. De acorda com a NBR 5626/98 a pressão máxima de uma rede predial será de 4 kgf/cm².

Quando se está realizando o teste de pressão hidráulica, as propriedades do material das tubulações provocam uma dilatação que influencia o resultado. Devido ao coeficiente de dilatação térmica das tubulações, podem surgir outros fatores que também interfiram no resultado; a diferença entre as temperaturas dos tubos e do fluído com que se realiza o teste. Uma diferença de 10 °C pode produzir uma variação de pressão de 0,5 a 1 bar.

Por esta razão, deve manter-se, o mais constante possível a temperatura do fluído de teste.

#### Como realizar o teste:

Conectar o equipamento de teste (bomba com o manômetro correspondente com precisão de 0,1 bar), no ponto mais baixo da instalação.

Fechar todos os pontos de saídas (registros, derivações, etc.), deixando aberto o ponto mais alto da instalação, geralmente a saída do chuveiro.

Encher a instalação de água, bombeando até que a mesma saia pelo ponto deixado aberto no ponto mais alto.

Verificar sempre o nível do depósito da bomba e completa-lo se necessário.

Fechar o ponto alto deixado aberto.

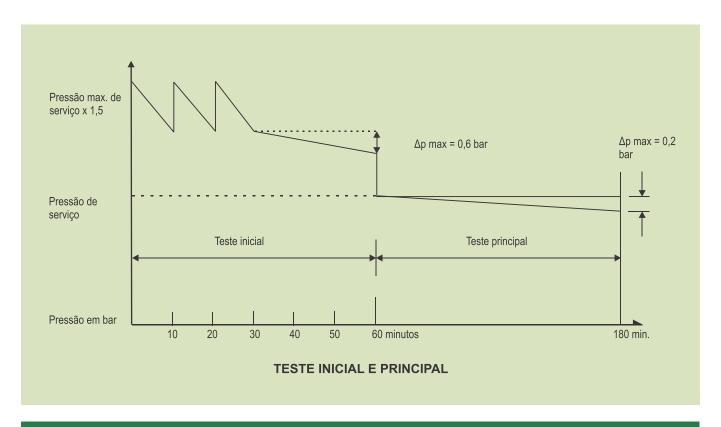
Proceder à fase de pressurização. Quando o manômetro registre a pressão de teste, próximo dos 3 kgf/cm², afrouxar a reapertar os pontos de saída para liberar o ar que possa ter ficado preso nas tubulações.

Uma vez eliminado o ar deve se manter a pressão de teste, fechando o registro junto ao manômetro e observar em especial todas as termofusões realizadas.

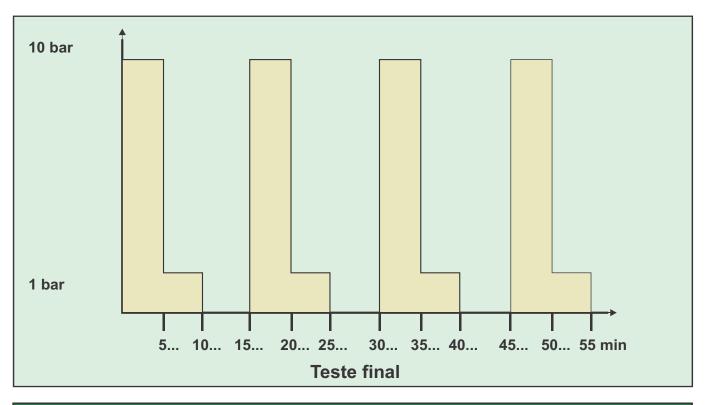







Obs.: Manômetro e registro (da ponta) não acompanham o equipamento.

### **FASES DO TESTE**


#### O teste de pressão hidráulica deve ser realizado em três etapas.

- Teste inicial: Nesta fase se aplicará uma pressão equivalente a 1,5 vezes a máxima pressão de serviço. Esta pressão deverá se manter duas vezes no período de trinta minutos e com um intervalo de 10 minutos. Transcorridos estes trinta minutos de teste, a pressão não deve diminuir mais de 0,6 bares e as tubulações não devem apresentar vazamentos nem trincas.
- Teste principal: Imediatamente após o teste inicial deve ser feito o teste principal, com duração de duas horas; neste período a pressão obtida no teste inicial, não deve diminuir mais de 0,2 bar.
- Teste final: Nesta fase final de teste, deverá se manter uma pressão de 10 e 1 bar em períodos alternados de cinco em cinco minutos e períodos iguais de tempo com as tubulações totalmente despressurizadas. A duração desta fase é de uma hora. Em parte nenhuma a instalação poderá apresentar vazamentos nem trincas.

Finalizando o teste, deverá se elaborar um documento ou protocolo, onde estarão registrados todos os dados e informações necessárias, assim como os resultados das distintas fases do teste. Deverá constar as assinaturas dos responsáveis pelo mesmo, lugar e data.



## TESTE FINAL



| PROTOCOLO DE TESTE DE PRESSÃO HIDRÁULICA                                                                                                                                                                                 |                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| Obra: Enderd Cidade: Estade Responsável pela obra: Responsável pelo teste:                                                                                                                                               | D:                                   |  |  |  |  |
| Hora inicial do teste: H                                                                                                                                                                                                 | ora final do teste:                  |  |  |  |  |
| Teste inicial:                                                                                                                                                                                                           |                                      |  |  |  |  |
| Máxima pressão de serviço x 1,5 =<br>Queda de pressão após 30 minutos:<br>Resultado do teste inicial:                                                                                                                    | bar (máximo 0,6 bar)                 |  |  |  |  |
| Teste principal:                                                                                                                                                                                                         |                                      |  |  |  |  |
| Pressão de serviço (resultado do teste inicia Queda de pressão após duas horas:Resultado do teste principal:                                                                                                             | bar (máximo 0,2 bar)                 |  |  |  |  |
| Teste final:                                                                                                                                                                                                             |                                      |  |  |  |  |
| Pressão a aplicação alternada, durante uma hora de pressão de 10 bar, 1 bar e<br>Rede despressurizada a intervalos de cinco minutos, foi detectado algum vazamento<br>ou trinca. Em caso negativo o teste será aprovado. |                                      |  |  |  |  |
| Lugar:                                                                                                                                                                                                                   |                                      |  |  |  |  |
| Assinatura do responsável pelo teste                                                                                                                                                                                     | Assinatura do responsável pela obra. |  |  |  |  |

## TABELA DE RESISTÊNCIA QUÍMICA E COMMODITIES

Esta tabela tem a finalidade de orientar os usuários na utilização do SISTEMA TOPFUSIÓN quando em contato com diversos reagentes químicos.

| PRODUTO                                  | TEMPERATURAS |         | RATURAS |                                                   |                 | TEMPERATURAS |         |
|------------------------------------------|--------------|---------|---------|---------------------------------------------------|-----------------|--------------|---------|
|                                          | CONC. (%)    | + 20 °C | + 60 °C | PRODUTO                                           | CONC. (%)       | + 20 °C      | + 60 °C |
| Acetato de amilo                         | 100          | -       |         | Bromo líquido                                     | 100             | -            |         |
| Acetato de amônio                        | todas        | +       | +       | Butino diol                                       | 100             | +            |         |
| Acetato de Butilo                        | 100          | -       |         | Carbonato de amônio                               | todas           | +            | +       |
| Acetato de etilo                         | 100          | -       |         | Carbonato de cálcio                               | frio sat.       | +            | +       |
| Acetato de metila                        | 100          | -       |         | Carbonato de potássio                             | frio sat.       | +            | +       |
| Acetato de sódio                         | frio sat.    | +       | +       | Carbonato de sódio                                | 10              | +            | +       |
| Acetato de prata                         | 100          | +       | +       | Carbonato de sódio                                | frio sat.       | +            | +       |
| Acetona                                  | 100          | +       |         | Cera                                              |                 | +            |         |
| Ácido acético                            | 10           | +       | +       | Ciclohexano                                       | 100             | -            |         |
| Ácido benzóico                           | 100          | +       |         | Ciclohexanol                                      | 100             | +            |         |
| Ácido benzóico                           | frio sat.    | +       | +       | Ciclohexanona                                     | 100             | -            |         |
| Ácido bórico                             | 100          | +       |         | Clorato de potássio                               | frio sat.       | +            |         |
| Ácido bórico                             | frio sat.    | +       | +       | Clorato de sódio                                  | frio sat.       | +            |         |
| Ácido cítrico                            | frio sat.    | +       | +       | Cloreto de amônio                                 | todas           | +            | +       |
| Ácido clorídrico                         | 36           | +       | -       | Cloreto de cálcio                                 | frio sat.       | +            | +       |
| Ácido clorídrico, gás                    | todas<br>100 | +       | -       | Cloreto de etileno Cloreto de etilo               | 100<br>100      | -            |         |
| Ácido cloroacético Ácido clorossulfônico | 100          | -       |         | Cloreto de etilo  Cloreto de metileno             | 100             | -            |         |
|                                          | 100          | -       |         | Cloreto de metileno Cloreto de potássio           | frio sat.       | +            | +       |
| Ácido de bateria<br>Ácido esteárico      | 100          | +       | +       | Cloreto de potassio  Cloreto de sódio (sal comum) | frio sat.       | +            | +       |
| Ácido estearico<br>Ácido ftálico         | 50           | +       |         | Cloreto de sodio (sai comum)  Cloreto estanoso    | frio sat.       | +            | +       |
| Acido fluorídrico                        | 40           | +       |         | Clorito de sódio                                  | 5               | +            |         |
| Ácido fórmico                            | 98           | +       | -       | Cloro líquido                                     | 100             | -            |         |
| Ácido fosfórico                          | 10           |         |         | Cloro, gás, seco                                  | 100             | _            |         |
| Ácido fosfórico                          | 85           | +       | +       | Cloro, gás, úmido                                 | 10              | _            |         |
| Ácido láctico                            | 10           | +       | +       | Clorobenzeno                                      | 100             | _            |         |
| Ácido láctico                            | 90           |         | +       | Cloroformio                                       | 100             | _            |         |
| Ácido muriático                          | 50           | +       |         | Cresol                                            | 100             | +            |         |
| Ácido nítrico                            | 10           | +       |         | Deca-hidro naftaleno                              | 100             | _            |         |
| Ácido nítrico                            | 25           |         |         | Dentifrico                                        | 100             | +            |         |
| Ácido oleico                             | 100          | +       |         | Detergente                                        | comercial       | +            |         |
| Ácido oxalico                            | frio sat.    | +       |         | Dextrina                                          | frio sat.       | +            |         |
| Ácido propiônico                         | a. 50        | +       |         | Dibutilftalato                                    | ino out.        | +            |         |
| Ácido succinico                          | frio sat.    | +       |         | Dicromato de potássio                             | frio sat.       | +            |         |
| Ácido sulfúrico                          | 10           | +       | +       | Diesel                                            |                 | -            | _       |
| Ácido sulfúrico                          | 50           | +       |         | Diisononil ftalato                                |                 | +            |         |
| Ácido sulfúrico                          | 85           | -       |         | Dimetilformamida                                  | 100             | +            |         |
| Ácido tartárico                          | frio sat.    | +       | +       | Dioctil adapto                                    |                 | +            |         |
| Ácido úrico                              | 100          | +       | +       | Dioctil ftalato                                   |                 | +            |         |
| Acrilonitrila                            | 100          | +       |         | Dióxido de enxofre                                | todas           | +            |         |
| Água                                     | 100          | +       | +       | Dispersão de acronal                              |                 | +            |         |
| Água clorada                             | frio sat.    | -       |         | Dissulfeto de carbono                             | 100             | -            |         |
| Água de bromo                            | frio sat.    | -       |         | Diisopropil éter                                  | 100             | -            |         |
| Aguarrás                                 | 100          | -       | -       | Enxofre                                           | 100             | +            |         |
| Água oxigenada                           | 3            | +       |         | Éter de petróleo                                  |                 | -            |         |
| Água oxigenada                           | 30           | -       |         | Éter etílico                                      | 100             | -            |         |
| Álcool alítico                           | 96           | +       |         | Etilbenzeno                                       | 100             | -            |         |
| Álcool amílico                           | 100          | +       |         | Fenol                                             | 100             | +            |         |
| Álcool benzílico                         | 100          | +       |         | Formaldeído                                       | 40              | +            |         |
| Álcool etílico                           | 100          | +       |         | Fosfato de amônio                                 | todas           | +            | +       |
| Álcool gorduroso sulfonado               |              | +       |         | Fosfato de sódio                                  | frio sat.       | +            | +       |
| Álcool isopropílico                      | 100          | +       |         | Fructosa                                          | frio sat.       | +            | +       |
| Álcool metílico                          | 100          | +       |         | Gasolina (1)                                      |                 | -            |         |
| Álcool n-butílico (n-butanol)            | 100          | +       |         | Gasolina comum                                    |                 | -            |         |
| Alume (todos os tipos)                   | todas        | +       | +       | Gasolina pura                                     |                 | -            |         |
| Amoníaco                                 | 10           | +       | +       | Gasolina super                                    | 400             |              |         |
| Amoníaco                                 | 30           | +       |         | Glicerina                                         | 100             | +            |         |
| Andrido acético                          | 100          | +       |         | Glicol                                            | 100             | +            |         |
| Anilina                                  | 100          | +       |         | Glicose                                           | frio sat.       | +            | +       |
| Anisol                                   | 100          | -       |         | Heptano                                           | 100             | -            |         |
| Anticongelante                           |              | +       |         | Hexano                                            | 100             | -            |         |
| Asfalto (1)                              |              | +       |         | Hidróxido de alumínio Hidróxido de amônio         | frio sat.       | +            | +       |
| Aspirina                                 | 100          | +       |         |                                                   | frio sat.<br>50 |              |         |
| Benzaldeido                              | 100          | +       |         | Hidróxido de potássio Hidróxido de sódio          | 50              | +            | +       |
| Benzeno                                  | 100          | -       |         | Hidróxido de sódio (soda caustica)                | 100             | +            | +       |
| Bissulfito de sódio                      | frio sat.    | +       |         | Hipoclorito de cálcio                             | todas           | +            |         |
| Bórax                                    | frio sat     | +       | +       | riipodionto de Calcio                             | เบนสร           | T            |         |

### TABELA DE RESISTÊNCIA QUÍMICA E COMMODITIES

Esta tabela tem a finalidade de orientar os usuários na utilização do SISTEMA TOPFUSIÓN quando em contato com diversos reagentes químicos.

| SISTEMA TOPFUSION quando em co          |           |                  |                  |  |
|-----------------------------------------|-----------|------------------|------------------|--|
| PRODUTO                                 | CONC. (%) | TEMPER<br>+ 20°C | ATURAS<br>+ 60°C |  |
| Hipoclorito de sódio                    | 20        | +                | -                |  |
| Hipoclorito de sódio                    | 30        | -                | -                |  |
| Isooctano                               | 100       | -                |                  |  |
| lodeto de potássio                      | frio sat. | +                | +                |  |
| Lanolina (gordura de lã)                |           | +                |                  |  |
| Lysol                                   |           | +                |                  |  |
| Mentol                                  | 100       | +                |                  |  |
| Mercúrio                                | 100       | +                |                  |  |
| Metil etil acetona                      | 100       | -                |                  |  |
| Mistura ácida sulfocrônica              |           | -                |                  |  |
| Morfolina                               | 100       | +                |                  |  |
| Nitrato de alumínio                     | sat.      | +                | +                |  |
| Nitrato de amônio                       | todas     | +                | +                |  |
| Nitrato de cálcio                       | frio sat. | +                | +                |  |
| Nitrato de prata                        | sat.      | +                | +                |  |
| Nitrato de potássio                     | frio sat. | +                | +                |  |
| Nitrato de sódio                        | frio sat. | +                | +                |  |
| Nitrito de sódio                        | frio sat. | +                |                  |  |
| Nitrobenzeno                            | 100       | +                |                  |  |
| Óleo de linhaça                         |           | +                |                  |  |
| Óleo de máquina                         |           | +                |                  |  |
| Óleo de osso                            |           | +                |                  |  |
| Óleo de parafina                        |           | +                |                  |  |
| Óleo de silicone                        |           | +                |                  |  |
| Oleum                                   | todas     | -                |                  |  |
| Parafina                                |           | +                |                  |  |
| Pentóxido de fósforo                    | 100       | +                |                  |  |
| Perborato de sódio                      | frio sat. | +                | +                |  |
| Percloroetileno (ver tetracloroetileno) |           | _                |                  |  |
| Perfume                                 |           | +                |                  |  |
| Permanganato de potássio                | frio sat. | +                |                  |  |
| Persulfato de potássio                  | frio sat. | +                |                  |  |
| Piridina                                | 100       | -                |                  |  |
| Propilenoglicol                         | 100       | +                |                  |  |
| Resina                                  |           | -                |                  |  |
| Revelador fotográfico                   |           | +                |                  |  |
| Sabão                                   |           | +                |                  |  |
| Sabão suave                             |           | +                |                  |  |
| Sais de alumínio                        | todas     | +                | +                |  |
| Sais de bário                           | todas     | +                | +                |  |
| Sais de cobre                           | frio sat. | +                |                  |  |
| Sais de cromo (dibásico, tribásico)     | frio sat. | +                | +                |  |
| Sais de ferro                           | frio sat. | +                | +                |  |
| Sais de magnésio                        | frio sat. | +                | +                |  |
| Sais de mercúrio                        | frio sat. | +                | +                |  |
| Sais de níquel                          | frio sat. | +                | +                |  |
| Sais de zinco                           | frio sat. | +                | +                |  |
| Sal de prata                            | frio sat. | +                | +                |  |
| Sal fixador (fotos)                     | todas     | +                | +                |  |
| Shampoo (1)                             |           | +                |                  |  |
| Solução de sabão                        |           | +                |                  |  |
| Solução descolorante (12,5% Cloro)      |           |                  |                  |  |
| Sulfato de alumínio                     | sat.      | +                | +                |  |
| Sulfato de amônio                       | todas     | +                | +                |  |
| Sulfato de cobre                        | sat.      | +                | +                |  |
| Sulfato de magnésio                     | sat.      | +                | +                |  |
| Sulfato de potássio                     | frio sat. | +                | +                |  |
| Sulfato de sódio                        | frio sat. | +                | +                |  |
| Sulfato de zinco                        | sat.      | +                | +                |  |
| Sulfato ferroso                         | sat.      | +                | +                |  |
| Sulfito de sódio                        | frio sat. | +                | -                |  |
| Sulfuro de sódio                        | frio sat. | +                | +                |  |
| Tetracloreto de carbono                 | 100       | -                |                  |  |
| Tetracloroeteno                         | 100       | -                |                  |  |
| Tetracloroetileno (percloroetileno)     | 100       | -                |                  |  |
| Tetrahidrofurano                        | 100       | -                |                  |  |
| Tetrahidronaflalina                     | 100       | -                |                  |  |

| PRODUTO                           | CONC. (%)  | TEMPERATURAS |        |  |
|-----------------------------------|------------|--------------|--------|--|
| FNODOTO                           | CONC. (76) | + 20°C       | + 60°C |  |
| Tinta                             |            | +            |        |  |
| Tintura de iodo                   |            | +            |        |  |
| Tiofeno                           | 100        | -            |        |  |
| Tiossulfato de sódio              | frio sat.  | +            | +      |  |
| Tolueno                           | 100        | -            |        |  |
| Tricloreto de fósforo             | 100        | -            |        |  |
| Tricloroetileno                   | 100        | -            |        |  |
| Trióxido de cromo                 | frio sat.  | +            |        |  |
| Trióxido de cromo (ácido crômico) | 20         | +            |        |  |
| Ureia                             | frio sat.  | +            | +      |  |
| Vapor de bromo                    | baixa      | -            |        |  |
| Vaselina                          |            | +            |        |  |
| Xileno                            | 100        | -            |        |  |

#### LEGENDA:

#### Temperatura:

+ → Resistente

- → Não resistente

#### Concentração:

todas → Qualquer concentração frio sat. → Solução fria saturada

sat. → Saturada

baixa → Baixa concentração alta → Alta concentração

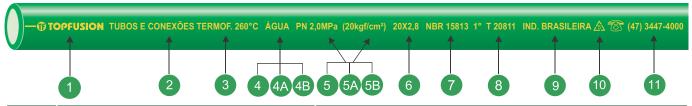
comercial --> Concentração normalmente comercializada

O PPCR (tipo 3) constitui uma classe de resina sintetizada a partir do propileno.

Os produtos desta polimerização apresentam baixa reatividade química por ser um termoplástico.

(1) A resistência depende da composição.

Importante: A tabela mostra a resistência química do PPR aos produtos químicos indicados de maneira individual, não temos nenhuma referência com relação a resistência química do PPR ao uso/contato com soluções dos produtos químicos misturados.


A temperatura de uso informada na tabela, deve ser considerada para o liquido ou gas circulante na tubulação e também à temperatura do ambiente da instalação.

## PROPRIEDADE DO PPCR

## PROPRIEDADES DO PPCR (Tipo 3)

| CARACTERÍSTICAS                         | MÉTODO DE MEDIÇÃO          | UNIDADES   | VALORES |
|-----------------------------------------|----------------------------|------------|---------|
| Densidade                               | ISO 1183                   | g/cm³      | 0,903   |
| Índice de fluidez:                      | ISO 1183                   |            |         |
| 190 °C - 5 Kg                           | Procedimento 118           | g / 10 min | 0,50    |
| 230 °C - 2-16 Kg                        | Procedimento 20            | g / 10 min | 0,35    |
| Temperatura de Fusão                    | Microscópio de Polarização | °C         | 150,00  |
| Módulo de elasticidade e flexão 23 °C   | ISO 178                    | MPa        | 85,00   |
| Resistência a tração no limite elástico | ISO 527                    | MPa        | 22,00   |
| a 23 °C, a 100mm/min.                   | ISO 527                    | MPa        | 10,00   |
| Alongamento no limite elástico 23 °C    | ISO 527                    | %          | 10,00   |
| a 100mm/min.                            |                            |            |         |
| Dureza Rockwell                         | ASTM 785                   | Escala R   | 71,00   |
| Resistência ao impacto IZOD a 23 °C cm. | ISO 180 1A                 | g/m        | 250,00  |
| Temperatura de Flexão sobre carga (HDT) | ASTM D 648                 | °C         | 85,00   |
| 455 KPa                                 |                            |            |         |
| Ponto de amolecimento Vicat 9,8N        | ISO 306                    | °C         | 133,00  |
| Condutividade Térmica a 23 °C           | DIN 52612                  | W/mk       | 0,23    |
| Calor Específico a 23 °C                | Calorímetro                | Kj / kg K  | 2,00    |

## SISTEMA TOPFUSIÓN DESCRIÇÃO DO TUBO



| ITEM | LEGENDA                                                              | DESCRIÇÃO                   | COR                 |
|------|----------------------------------------------------------------------|-----------------------------|---------------------|
| 1    | TOPFUSIÓN<br>TUBOS E CONEXÕES<br>Toplatin, una consola for acus vol. | Logomarca                   |                     |
| 2    | TUBOS E CONEXÕES                                                     | Ident. do material          |                     |
| 3    | TERMOF. 260 °C                                                       | Temperatura para termofusão |                     |
| 4    | ÁGUA CALEFAÇÃO                                                       | Líquido a transportar PN 25 | Tarja guia vermelha |
| 4A   | ÁGUA QUENTE                                                          | Líquido a transportar PN 20 | Tarja guia dourada  |
| 4B   | ÁGUA FRIA                                                            | Líquido a transportar PN 12 | Tarja guia branca   |
| 5    | PN 2,5MPa (25 kgf/cm <sup>2</sup> )                                  | Pressão nominal de trabalho | Tarja guia vermelha |
| 5A   | PN 2,0MPa (20 kgf/cm <sup>2</sup> )                                  | Pressão nominal de trabalho | Tarja guia dourada  |
| 5B   | PN 1,25 MPa (12,5 kgf/cm²)                                           | Pressão nominal de trabalho | Tarja guia branca   |
| 6    | (20 X 2,8)                                                           | Diam. ext. e esp. da parede |                     |
| 7    | NBR 15813                                                            | Norma nacional (ABNT)       |                     |
| 8    | 1° T 20811                                                           | Rastreabilidade             |                     |
| 9    | IND. BRASILEIRA                                                      | País de fabricação          |                     |
| 10   |                                                                      | Símbolo de reciclado        |                     |
| 11   | (47) 3447-4000                                                       | Fone de contato             |                     |

<sup>\*</sup>Para a tarja PN 12,5, é inserido: "NÃO USAR EM ÁGUA QUENTE", conforme Norma 15813-1:2018.





| TUBOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Código    | Diâmetro<br>mm                                | Espessura<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PN<br>kgf/cm² | Comp.<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU202503  | 20                                            | 3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU252503  | 25                                            | 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÃO         | TU322503  | 32                                            | 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -C. S. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S          | TU402503  | 40                                            | 6,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TOP'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CALEFA     | TU502503  | 50                                            | 8,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۳          | TU632503  | 63                                            | 10,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S          | TU752503  | 75                                            | 12,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU902503  | 90                                            | 15,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU1102503 | 110                                           | 18,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU202003  | 20                                            | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU252003  | 25                                            | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Щ          | TU322003  | 32                                            | 4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Z          | TU402003  | 40                                            | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A CONTRACTOR OF THE CONTRACTOR | B          | TU502003  | 50                                            | 6,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O TOPRISH THE SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÁGUA QUENT | TU632003  | 63                                            | 8,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D          | TU752003  | 75                                            | 10,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÁG         | TU902003  | 90                                            | 12,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU1102003 | 110                                           | 15,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU1602006 | 160                                           | 21,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU201203  | 20                                            | 2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU251203  | 25                                            | 2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4          | TU321203  | 32                                            | 2,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TOPFUSON TUBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FR         | TU401203  | 40                                            | 3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TOPFUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A          | TU501203  | 50                                            | 4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GUA        | TU631203  | 63                                            | 5,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | À          | TU751203  | 75                                            | 6,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU901203  | 90                                            | 8,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU1101203 | 110                                           | 10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12,5          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TU1601206 | 160                                           | 14,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12,5          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | TOO R. S. | A CONTRACT OF THE PARTY OF THE |               | Separate Sep |

Obs.: As conexões são PN-25, exceto Registro Esfera PPR, Curva 90º Longa, Curva Sobrepasso e União PPR; Os tubos PN-12,5 equivalem a série de tubo S 5; Os tubos PN-20 equivalem a série de tubo S 3,2; Os tubos PN-25 equivalem a série de tubo S 2,5; Os insertos metálicos das conexões são de latão niquelado sendo a rosca padrão BSP.

| TUBOS / ROLOS | Código    | Diâmetro<br>mm | Espessura<br>mm | PN<br>kgf/cm² | Comp.<br>m |  |
|---------------|-----------|----------------|-----------------|---------------|------------|--|
|               |           | ÁGUA QUENTE    |                 |               |            |  |
|               | TU2020100 | 20             | 2,8             | 20            | 100        |  |
|               | TU2520100 | 25             | 3,5             | 20            | 100        |  |
|               | TU3220100 | 32             | 4,4             | 20            | 100        |  |
|               |           |                | ÁGUA FRIA       | <b>\</b>      |            |  |
|               | TU2012100 | 20             | 2,2             | 12,5          | 100        |  |
|               | TU2512100 | 25             | 2,7             | 12,5          | 100        |  |
|               | TU3212100 | 32             | 2,9             | 12,5          | 100        |  |

| (Andrews) |
|-----------|
|           |

**ADAPTADOR** 

| Código  | Diâmetro<br>mm |
|---------|----------------|
| AD20120 | 20 x ½         |
| AD25120 | 25 x ½         |
| AD25340 | 25 x 3/4       |
| AD32340 | 32 x 3/4       |
| AD32010 | 32 x 1         |
| AD40114 | 40 x 1.1/4     |
| AD50112 | 50 x 1.½       |
| AD63020 | 63 x 2         |
| AD75212 | 75 x 2.½       |
| AD90030 | 90 x 3         |
| AD11004 | 110 x 4        |
| AD16006 | 160 x 6        |



| Código  | Diâmetro<br>mm                   |
|---------|----------------------------------|
| FD20120 | 20 x ½                           |
| FD25340 | 25 x <sup>3</sup> ⁄ <sub>4</sub> |
|         |                                  |



ADAPTADOR REG. ESFERA

| Diametro<br>mm |
|----------------|
| 20             |
| 25             |
| 32             |
| 40             |
| 50             |
| 63             |
| 75             |
| 90             |
| 110            |
|                |



| Código | Diâmetro<br>mm |
|--------|----------------|
| ADT20  | 20             |
| ADT25  | 25             |
|        |                |
|        |                |
|        |                |
|        |                |

## BASTÃO REPARO



| Código | Diâmetro<br>mm |
|--------|----------------|
| REP08  | 8              |
|        |                |
|        |                |

# BUCHA DE REDUÇÃO



| Código   | Diâmetro<br>mm |
|----------|----------------|
| BU2520   | 25 x 20        |
| BU3220   | 32 x 20        |
| BU3225   | 32 x 25        |
| BU4025   | 40 x 25        |
| BU4032   | 40 x 32        |
| BU5025   | 50 x 25        |
| BU5032   | 50 x 32        |
| BU5040   | 50 x 40        |
| BU6325   | 63 x 25        |
| BU6332   | 63 x 32        |
| BU6340   | 63 x 40        |
| BU6350   | 63 x 50        |
| BU7563   | 75 x 63        |
| BU9075   | 90 x 75        |
| BU11063  | 110 x 63       |
| BU11090  | 110 x 90       |
| BU160110 | 160 x 110      |

#### CAP



| Código | Diâmetro<br>mm |
|--------|----------------|
| CP200  | 20             |
| CP250  | 25             |
| CP320  | 32             |
| CP400  | 40             |
| CP500  | 50             |
| CP630  | 63             |
| CP750  | 75             |
| CP900  | 90             |
| CP1100 | 110            |
| CP1600 | 160            |

#### CONJ. FLANGE PADRÃO ANSI



| Diâmetro<br>mm |
|----------------|
| 50             |
| 63             |
| 75             |
| 90             |
| 90             |
| 110            |
| 110            |
| 160            |
| 160            |
|                |

Obs.: 150 e 300 lbs. A Flange de 300 lbs deverá ser utilizada somente com tubos PN-25. Esta flange não é união.

#### **CURVA 90° CURTA**



| Código | Diâmetro<br>mm |
|--------|----------------|
| CR200  | 20             |
| CR250  | 25             |
| CR320  | 32             |
|        |                |
|        |                |

# CURVA 90° LONGA



| Código | Diâmetro<br>mm |
|--------|----------------|
| CR400  | 40             |
| CR500  | 50             |
| CR630  | 63             |
| CR750  | 75             |
| CR900  | 90             |
| CR1100 | 110            |

#### **CURVA SOBREPASSO**



| Código | Diâmetro<br>mm |
|--------|----------------|
| CS200  | 20             |
| CS250  | 25             |
| CS320  | 32             |
|        |                |
|        |                |
|        |                |

# DERIVAÇÃO DE RAMAL



| DR5025 | 50 x 25 |
|--------|---------|
| DR5032 | 50 x 32 |
| DR6325 | 63 x 25 |
| DR6332 | 63 x 32 |
| DR7525 | 75 x 25 |
| DR7532 | 75 x 32 |
| DR9025 | 90 x 25 |
| DR9032 | 90 x 32 |

Código

Diâmetro mm

Obs.: Para tubulação de 110 e 160mm, deve ser utilizado a Derivação de 90mm.





| Código | mm  |
|--------|-----|
| JO205  | 20  |
| JO255  | 25  |
| JO325  | 32  |
| JO405  | 40  |
| JO505  | 50  |
| JO635  | 63  |
| JO755  | 75  |
| JO905  | 90  |
| JO1105 | 110 |
| JO1605 | 160 |
|        |     |

## **JOELHO 90°**



| Código | Diâmetro<br>mm |
|--------|----------------|
| JO200  | 20             |
| JO250  | 25             |
| JO320  | 32             |
| JO400  | 40             |
| JO500  | 50             |
| JO630  | 63             |
| JO750  | 75             |
| JO900  | 90             |
| JO1100 | 110            |
| JO1600 | 160            |

## JOELHO 90° MACHO



| Código  | Diâmetro<br>mm |
|---------|----------------|
| JO20120 | 20 x ½         |
| JO25340 | 25 x 3/4       |
|         |                |
|         |                |
|         |                |
|         |                |
|         |                |

#### **JOELHO MISTO 90°**



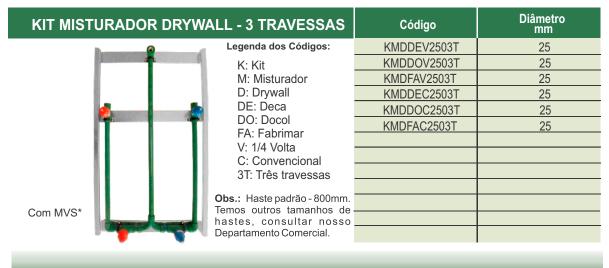
| Código  | Diâmetro<br>mm                   |
|---------|----------------------------------|
| JM20120 | 20 x ½                           |
| JM25120 | 25 x ½                           |
| JM25340 | 25 x <sup>3</sup> / <sub>4</sub> |
| JM32010 | 32 x 1                           |
|         |                                  |
|         |                                  |
|         |                                  |
|         |                                  |

#### **JOELHO MACHO 45°**



| Código | Diâmetro<br>mm |
|--------|----------------|
| JMC250 | 25             |
|        |                |
|        |                |
|        |                |
| _      |                |
|        |                |

# JOELHO REDUÇÃO 90°




| Código  | mm      |
|---------|---------|
| JR25200 | 25 x 20 |
|         |         |
|         |         |
|         |         |
|         |         |
|         |         |

#### Diâmetro mm KIT MISTURADOR C/ BASE CHUVEIRO Código KMDEV250 Legenda dos Códigos: 25 KMDOV250 25 K: Kit KMFAV250 25 M: Misturador KMDEC250 25 DE: Deca KMDOC250 25 DO: Docol KMFAC250 25 FA: Fabrimar V: 1/4 Volta C: Convencional Obs.: Haste padrão - 800mm. Temos outros tamanhos de hastes, consultar nosso Departamento Comercial. Com MVS\*

| KIT MISTURADOR C/ BASE | CHUVEIRO STANDARD                                                                                             | Código    | Diâmetro<br>mm |
|------------------------|---------------------------------------------------------------------------------------------------------------|-----------|----------------|
| <b>©</b>               | Legenda dos Códigos:                                                                                          | KMDECS200 | 20             |
| T                      | K: Kit                                                                                                        | KMDOCS200 | 20             |
|                        | M: Misturador                                                                                                 | KMDECS250 | 25             |
|                        | DE: Deca                                                                                                      | KMDOCS250 | 25             |
|                        | DO: Docol                                                                                                     |           |                |
|                        | C: Convencional                                                                                               |           |                |
|                        | S: Standard                                                                                                   |           |                |
| Com MVS*               | Obs.: Haste padrão - 800mm.<br>Temos outros tamanhos de<br>hastes, consultar nosso<br>Departamento Comercial. |           |                |

| KIT MISTURADOR DRYWALL - 2 TRAVESSAS                                                                           | Código      | Diâmetro<br>mm |
|----------------------------------------------------------------------------------------------------------------|-------------|----------------|
| Legenda dos Códigos:                                                                                           | KMDDEV2502T | 25             |
| K: Kit                                                                                                         | KMDDOV2502T | 25             |
| M: Misturador                                                                                                  | KMDFAV2502T | 25             |
| D: Drywall                                                                                                     | KMDDEC2502T | 25             |
| DE: Deca                                                                                                       | KMDDOC2502T | 25             |
| DO: Docol<br>FA: Fabrimar                                                                                      | KMDFAC2502T | 25             |
| V: 1/4 Volta                                                                                                   |             |                |
| C: Convencional                                                                                                |             |                |
| 2T: Duas travessas                                                                                             |             |                |
| Com MVS*  Obs.: Haste padrão - 800mm. Temos outros tamanhos de hastes, consultar nosso Departamento Comercial. |             |                |



#### KIT MISTURADOR MONOCOMANDO TF



#### Legenda dos Códigos:

K: Kit

MM: Mist. Monocomando TF G: Registro Gaveta

DOC: Docol DEC: Deca

Obs¹: Hastes padrão laterais 850mm (25mm) e haste central 1050mm (20mm) Temos outros tamanhos dehastes, consultar nosso Departmaneto Comercial.

Obs.: Temos um modelo de espelho retangular, consultar a linha de Ferramentas. Os acabamentos Docol e Deca, refere-se ao Registro de Gaveta.

# Kit KMN

 KMMGDOC250
 25 x 20 x 25

 KMMGDEC250
 25 x 20 x 25

Código

Diâmetro mm

#### **LUVA**



| Código | Diâmetro<br>mm |
|--------|----------------|
| LU200  | 20             |
| LU250  | 25             |
| LU320  | 32             |
| LU400  | 40             |
| LU500  | 50             |
| LU630  | 63             |
| LU750  | 75             |
| LU900  | 90             |
| LU1100 | 110            |
| LU1600 | 160            |
|        |                |

#### **LUVA MISTA**



| Código  | Diâmetro<br>mm                   |
|---------|----------------------------------|
| LM20120 | 20 x ½                           |
| LM25120 | 25 x ½                           |
| LM25340 | 25 x <sup>3</sup> ⁄ <sub>4</sub> |
| LM32340 | 32 x ¾                           |
| LM32010 | 32 x 1                           |
| LM40114 | 40 x 1.1/4                       |
| LM50112 | 50 x 1.½                         |
| LM63020 | 63 x 2                           |
| LM75212 | 75 x 2.½                         |
| LM90030 | 90 x 3                           |
| LM11004 | 110 x 4                          |
| LM16006 | 160 x 6                          |
|         |                                  |

## LUVA REDUÇÃO



| Código  | Diâmetro<br>mm |
|---------|----------------|
| LR32200 | 32 x 20        |
| LR32250 | 32 x 25        |
| LR40250 | 40 x 25        |
| LR40320 | 40 x 32        |
| LR50320 | 50 x 32        |
| LR50400 | 50 x 40        |
| LR63400 | 63 x 40        |
| LR63500 | 63 x 50        |
| LR75500 | 75 x 50        |
| LR75630 | 75 x 63        |
| LR90630 | 90 x 63        |
| LR90750 | 90 x 75        |

#### **MISTURADOR C/ INSERTO**



| Código  | Diâmetro<br>mm                   |
|---------|----------------------------------|
| MI20120 | 20 x ½                           |
| MI25340 | 25 x <sup>3</sup> ⁄ <sub>4</sub> |
|         |                                  |
|         |                                  |
|         |                                  |

#### **MISTURADOR S/ INSERTO**



| Código | Diâmetro<br>mm |
|--------|----------------|
| MI2525 | 25             |
|        |                |
|        |                |
|        |                |
|        |                |
|        |                |

#### **MISTURADOR CONJUNTO BASE**





| Código  | Diâmetro<br>mm |
|---------|----------------|
| MDEV250 | 25 x 25 x 25   |
| MDOV250 | 25 x 25 x 25   |
| MFAV250 | 25 x 25 x 25   |
| MDEC250 | 25 x 25 x 25   |
| MDOC250 | 25 x 25 x 25   |
| MFAC250 | 25 x 25 x 25   |
|         |                |

Com MVS\*

#### **MISTURADOR CONJUNTO BASE STANDARD**



| genda dos Codigo: |
|-------------------|
| M: Misturador     |
| DE: Deca          |
| DO: Docol         |
| C: Convencional   |
| S: Standard       |

| Código   | Diâmetro<br>mm |
|----------|----------------|
| MDECS200 | 20 x 20 x 20   |
| MDOCS200 | 20 x 20 x 20   |
| MDECS250 | 25 x 20 x 25   |
| MDOCS250 | 25 x 20 x 25   |
|          |                |
|          |                |

#### **MISTURADOR MACHO**





| Código | Diâmetro<br>mm |
|--------|----------------|
| MIM200 | 20             |
| MIM250 | 25             |
|        |                |
|        |                |
|        |                |
|        |                |

#### **MISTURADOR MONOCOMANDO**



| Ohs · Temos um modelo |  |  |  |
|-----------------------|--|--|--|
|                       |  |  |  |

|    | Código | Diâmetro<br>mm |
|----|--------|----------------|
|    | MM200  | 20             |
|    |        |                |
|    |        |                |
|    |        |                |
|    |        |                |
| s. |        |                |
|    |        |                |

# PRESILHA Código Diâmetro mm PRE50 50 PRE63 63 PRE75 75 PRE90 90



| Código  | Diâmetro<br>mm |
|---------|----------------|
| RES200  | 20             |
| RES250  | 25             |
| RES320  | 32             |
| RES400  | 40             |
| RES500  | 50             |
| RES630  | 63             |
| RES750  | 75             |
| RES900  | 90             |
| RES1100 | 110            |



| Código   | Diâmetro<br>mm |
|----------|----------------|
| REM20120 | 20 x ½         |
| REM25340 | 25 x ¾         |
| REM32010 | 32 x 1         |
| REM40114 | 40 x 1.1⁄4     |
| REM50112 | 50 x 1.½       |
| REM63020 | 63 x 2         |
| REM75212 | 75 x 2.½       |
| REM90030 | 90 x 3         |
| REM11004 | 110 x 4        |



| Diâmetro<br>mm |
|----------------|
| 20             |
| 25             |
| 32             |
| 40             |
| 50             |
| 63             |
| 75             |
| 90             |
| 110            |
|                |



| Código   | Diâmetro<br>mm |
|----------|----------------|
| RGDEC250 | 25             |
| RGDOC250 | 25             |
|          |                |
|          |                |
|          |                |
|          |                |

### **REGISTRO BASE PRESSÃO**

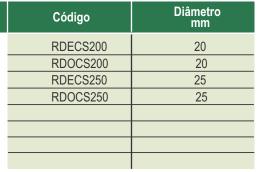
 Código
 Diâmetro mm

 RDEV250
 25

 RDOV250
 25

 RFAV250
 25

 RDEC250
 25


 RDOC250
 25

 RFAC250
 25



Com MVS\*

|         |              | ~           |
|---------|--------------|-------------|
| DECISTO | DACE DDECC   | AO STANDARD |
|         | A DAOL EKEOU | AU STANDARD |





Com MVS\*

#### **SUPORTE C/TRAVA**



| Código | Diâmetro<br>mm |
|--------|----------------|
| ST20   | 20             |
| ST25   | 25             |
| ST32   | 32             |
|        |                |
|        |                |
|        |                |
|        |                |

#### SUPORTE DESLIZANTE



| Código | Diâmetro<br>mm |
|--------|----------------|
| SD20   | 20             |
| SD25   | 25             |
| SD32   | 32             |
|        |                |
|        |                |
|        |                |

#### **SUPORTE FIXO**



| Código | Diâmetro<br>mm |
|--------|----------------|
| SF20   | 20             |
| SF25   | 25             |
| SF32   | 32             |
| SF40   | 40             |
| SF50   | 50             |
| SF63   | 63             |
| SF75   | 75             |
| SF90   | 90             |
| SF110  | 110            |

## ΤE



| Diâmetro<br>mm |
|----------------|
| 20             |
| 25             |
| 32             |
| 40             |
| 50             |
| 63             |
| 75             |
| 90             |
| 110            |
| 160            |
|                |

## TE MACHO



| Código  | Diâmetro<br>mm |
|---------|----------------|
| TM20120 | 20 x ½         |
| TM25340 | 25 x ¾         |
|         |                |
|         |                |
|         |                |

# TE MISTO



| Código  | Diâmetro<br>mm |
|---------|----------------|
| TF20120 | 20 x ½         |
| TF25120 | 25 x ½         |
| TF25340 | 25 x ¾         |
| TF32010 | 32 x 1         |
|         |                |
|         |                |

Diâmetro

# TE REDUÇÃO



| Codigo   | mm       |
|----------|----------|
| TR25200  | 25 x 20  |
| TR32250  | 32 x 25  |
| TR40320  | 40 x 32  |
| TR50250  | 50 x 25  |
| TR50320  | 50 x 32  |
| TR50400  | 50 x 40  |
| TR63250  | 63 x 25  |
| TR63320  | 63 x 32  |
| TR63400  | 63 x 40  |
| TR63500  | 63 x 50  |
| TR75250  | 75 x 25  |
| TR75400  | 75 X 40  |
| TR75500  | 75 X 50  |
| TR75630  | 75 X 63  |
| TR90500  | 90 X 50  |
| TR90630  | 90 X 63  |
| TR90750  | 90 X 75  |
| TR110630 | 110 x 63 |
| TR110900 | 110 X 90 |
|          |          |

#### TE Y



| Código | Diâmetro<br>mm |
|--------|----------------|
| TY250  | 25             |
|        |                |
|        |                |
|        |                |
|        |                |
|        |                |
|        |                |
|        |                |

#### UNIÃO C/ FLANGE PADRÃO TF



| Código | Diâmetro<br>mm |
|--------|----------------|
| UNF200 | 20             |
| UNF250 | 25             |
| UNF320 | 32             |
| UNF400 | 40             |
|        |                |
|        |                |
|        |                |

## **UNIÃO C/ FLANGE PADRÃO ANSI**



| Código   | Diâmetro<br>mm |
|----------|----------------|
| UNFA500  | 50             |
| UNFA630  | 63             |
| UNFA750  | 75             |
| UNFA900  | 90             |
| UNFA1100 | 110            |
| UNFA1600 | 160            |
|          |                |
|          |                |
|          |                |

## UNIÃO MISTA C/ FLANGE PADRÃO TF - FÊMEA



| Código   | Diâmetro<br>mm |
|----------|----------------|
| UMF20120 | 20 x ½         |
| UMF25340 | 25 x ¾         |
| UMF32010 | 32 x 1         |
| UMF40114 | 40 x 1.1/4     |
|          |                |
|          |                |
|          |                |
|          |                |

## UNIÃO MISTA C/ FLANGE PADRÃO ANSI - FÊMEA



| Código     | Diâmetro<br>mm |
|------------|----------------|
| UMFAF50112 | 50 x 1.½       |
| UMFAF63020 | 63 x 2         |
| UMFAF75212 | 75 x 2.½       |
| UMFAF90030 | 90 x 3         |
| UMFAF11004 | 110 x 4        |
| UMFAF11606 | 160 x 6        |
|            |                |

# UNIÃO MISTA C/ FLANGE PADRÃO ANSI - MACHO



| Código     | Diâmetro<br>mm |
|------------|----------------|
| UMFAM50112 | 50 x 1.½       |
| UMFAM63020 | 63 x 2         |
| UMFAM75212 | 75 x 2.½       |
| UMFAM90030 | 90 x 3         |
| UMFAM11004 | 110 x 4        |
| UMFAM16006 | 160 x 6        |
|            |                |
|            |                |
|            |                |
|            |                |
|            |                |

## UNIÃO PPR - ÁGUA FRIA



| Código    | Diâmetro<br>mm |
|-----------|----------------|
| UNAF20PPR | 20             |
| UNAF25PPR | 25             |
| UNAF32PPR | 32             |
|           |                |
|           |                |
|           |                |
|           |                |
|           |                |
|           |                |
|           |                |

# UNIÃO PPR - ÁGUA QUENTE



| Código    | Diāmetro<br>mm |
|-----------|----------------|
| UNAQ20PPR | 20             |
| UNAQ25PPR | 25             |
| UNAQ32PPR | 32             |
|           |                |
|           |                |
|           |                |
|           |                |
|           |                |
|           |                |

# VÁLVULA BORBOLETA



| Código | mm  |
|--------|-----|
| VB750  | 75  |
| VB900  | 90  |
| VB1100 | 110 |
| VB1600 | 160 |
|        |     |
|        |     |
|        |     |
|        |     |
|        |     |
|        |     |

